Consider the graph of the polar equation $r = 5 - 8\cos\theta$.

SCORE: /6 PTS

[b]

[a] Fill in the blanks.

[ii]

[iii]

1-8/21 MUST HAVE "LOOP" TO EARN ANY POINTS

The shape of the graph is a/an LIMACON WITH LOOP (

pass through the pole.

does / does not

Find the rectangular coordinates of the

(E) (-3, 0) (-13, 0) (E) (O, O)

x - intercept(s)

v - intercept(s)

Sketch the graph on the grid provided above. You must provide a scale for the axes & plot all points from part [a][iii] above.

NOTE: Both parts of your answer for this question must be positive.

The point with polar co-ordinates
$$(4, -\frac{5\pi}{6})$$
 has rectangular co-ordinates $(2\sqrt{3}, -2)$.

 $(2\sqrt{3}, -2)$.

Convert the polar equation $r = 3 - 5\sin 2\theta$ to rectangular, and simplify as shown in the website handout. SCORE: _____/5 PTS NOTE: Your final answer should NOT have fractions, fractional exponents nor radicals.

$$(\sqrt{x^2+y^2})^3 = 3(x^2+y^2) - 10xy$$

$$= 3x^2 - 10xy + 3y^2$$

$$(x^2+y^2)^3 = (3x^2 - 10xy + 3y^2)^2$$

NOTE: $(-r, \theta)$ and $(-r, \pi - \theta)$ tests do NOT show that the graph is symmetric

[a] Using the information above, and the tests and shortcuts shown in lecture, test if the graph is symmetric over the pole, the polar axis, and/or $\theta = \frac{\pi}{2}$. State your conclusions in the table. NOTE: Run as FEW tests as needed to prove your answers are correct.

DOLL	r-3-10(1471A)
rolle.	$r=3-6\cos 4(\pi+\theta)$
	r= 3-6 cos (4/1+40)
	r= 3-6 [cos471cos40-sin475in40]
	r= 3-6 cos 40,057M
POLAR	1 r= 3-6-04/-A)
MXD	Y = 3-6054005YM

Type of symmetry	Conclusion
Over the polar axis	SYMMETRIC
Over $\theta = \frac{\pi}{2}$	SYMMETRIC
Over the pole	SYMMETRIC

1) POINT IF EXACTLY 2 CORRECT
2) POINTS IF ALL CORRECT

AUTOMATICALLY SYM OVER == =

[b] Based on the results of part [a], what is the minimum interval of the graph you need to plot first (before using reflections to draw the rest of the graph)?

[0, 王], ①

[c] Find the angles <u>algebraically</u> in the minimum interval in part [b] at which the graph goes through the pole.

 $0=3-6\cos 4\Theta \qquad 0 \le \Theta \le \overline{\Xi} \longrightarrow 0 \le 4\Theta \le 2\pi$ $6\cos 4\Theta = 3$ $10\cos 4\Theta = \frac{\pi}{3}$ $10\cos 4\Theta = \frac{\pi}{3$

[d] Find the value of r (rounded to 1 decimal place) for all common angles in the minimum interval in part [b],

NOTE: You do NOT need to show work, only answers.

 $\frac{\theta}{0} \qquad \frac{r}{-3}$ $\frac{\pi}{4} \qquad \frac{6}{4} \qquad \frac{\pi}{4} \qquad \frac{\pi$

GRADED BY ME

[d] Sketch the graph on the grid provided below. You must provide a scale for the polar axis & plot all points from part [c] above.